



## MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC -270001 – 2005 certified)

## **WINTER -2019 EXAMINATION**

**SUBJECT CODE:** 

22402

## MODEL ANSWER

## **Important Instructions to examiners:**

- 1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language error such as grammatical, spelling errors should not be given more importance.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidate's answer and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.

| Que.<br>NO | Answer with question                                                                                                                                                                                                                                                                                                                                                                                                          |      |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
| Q. 1       | Attempt any FIVE of the following                                                                                                                                                                                                                                                                                                                                                                                             |      |  |  |  |  |
| a)         | Define core of section.                                                                                                                                                                                                                                                                                                                                                                                                       |      |  |  |  |  |
| Ans.       | Core of a section: Core of the section is that portion around the centroid in within which the line of action of load must act, so as to produce only compressive stress is called as core of the section. It is also defined as the region or area within which if load is applied, produces only compressive resultant stress. If Compressive load is applied, the there is no tension anywhere in the section.  emax = d/8 |      |  |  |  |  |
|            | e = Core of section  Core of section  For Circular section  For rectangular section                                                                                                                                                                                                                                                                                                                                           | 01 M |  |  |  |  |



| b)         | State the condition for no tension in the column section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Ans.       | Condition for no tension in the column section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|            | $\sigma_0$ = Direct stress and $\sigma_b$ = Bending stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
|            | ,if $\sigma_0 > \sigma_b$ the resultant stress is compressive, If $\sigma_0 = \sigma_b$ the minimum stress is zero and the maximum stress is 260, the stress distribution is compressive. but $\sigma_0 < \sigma_b$ the stress is partly compressive and partly tensile. A small tensile stress at the base of a structure may develop tension cracks. Hence for no- tension condition, direct stress should be greater than or equal to bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 M   |
|            | stress. $\sigma_0 > = \sigma_b$<br>P / A = M/Z<br>P / A = Pxe/Z , e = < Z/A Hence for no -tension condition, eccentricity should be less than Z/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01 M   |
| c)         | State expression for deflection of simply supported beam carrying point load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Ans.       | at midspan.  A simply supported beam of span L carrying a central point load F at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
|            | midspan  A  B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01 M   |
|            | To find the maximum deflection at mid-span, we set x = L/2 in the equation and obtain ,maximum deflection = Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01 M   |
| <b>d</b> ) | Yc = Y max = F L <sup>3</sup> / 48 El<br>State the values of maximum slope and maximum deflection for a cantilever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U1 IVI |
| u)         | beam of span 'L' carrying a point load 'W' at the free end . EI = constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| Ans.       | $A = \frac{1}{2} $ | 01 M   |



| <b>e</b> ) | Compare a simply supported beam and a continuous beam w.r.t deflected                                                                                                                                                                                                                                                                                                                                                                    |                                    |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|            | shape of a beam.                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| Ans.       | The firm of a curve to which the longitudinal axis of the beam bends after loading is called elastic curve or deflected shape of the beam. In the figure shows the deflected shape for various types of continuous beam. The deflected shape is shown by a dotted curve. Deflected shape simply supported beam and continuous beam  (i) Continuous beam with simply supported ends  W  W  (i) Continuous beam with simply supported ends | 01 M                               |
|            | (ii) Continuous beam with one end fixed and other simply supports                                                                                                                                                                                                                                                                                                                                                                        |                                    |
|            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                    | O1 M<br>(Any<br>one<br>sketc<br>h) |
|            | (iv) Continuous beam with end span overhanging                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
|            | (a) seminated beam with one of                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
| <b>f</b> ) | Write the values of stiffness factor for beams.                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
|            | i) Simply supported at both ends                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
|            | ii)/fixed at one end simply supported at other end                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| Ans.       | i)Stiffness factor for a beam Simply supported at both the ends = 3EI/L                                                                                                                                                                                                                                                                                                                                                                  | 01 M                               |
|            | ii) Stiffness factor for a beam fixed at one end and simply supported at other end = 4EI/L                                                                                                                                                                                                                                                                                                                                               | 01 M                               |
| <b>g</b> ) | Make the following truss perfect by adding or removing the members, if                                                                                                                                                                                                                                                                                                                                                                   |                                    |
|            | required as shown in fig. No.1                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
|            | D .                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
|            | B c A C B                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|            | (ii) (ii) B                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |
|            | - agr - 130 - 2                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |



| Ans.       | For i) n=5 ,j=4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 7113       | $2j-3 = 2 \times 4 - 3 = 5$ .since $n = 2j-3$ hence the frame is Perfect frame  iii) $n = 5$ , $j=4$ , $2j-3 = 2 \times 4 - 3 = $ since $n = 2j-3$ hence the frame is Perfect frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01 M         |
|            | A (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01 M         |
| Q. 2       | Attempt any THREE of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 M         |
| a)         | Explain the effect of eccentric load with sketch w.r.t stresses developed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Ans.       | Effect of eccentric load: A load whose line of action does not coincide with the axis of a member is called an eccentric load. The distance between the eccentric axis of the body and the point of loading is called an eccentric limit 'e'. Due to effect of eccentricity axial load causes only direct stress whereas an eccentric load causes direct as well as bending stresses. Direct load is that force which act a centroidal longitudinal axis of the member. Eccentric load is that force which act away from centroidal longitudinal axis of the member. Thus the resultant stresses due to direct as well as bending stresses in the member | 02 M<br>01 M |
|            | (ii) Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|            | Direct stress = $\sigma 0$ , Bending stress = $\sigma b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
|            | $\sigma 0 = P / A$ , $\sigma b = (M \times y) / I$ therefor $\sigma b = M/Z$ But, Resultant stresses =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|            | $\sigma_{\text{direct}} + \sigma_{\text{bending}} \sigma_{\text{max}} = 60 + 6b$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 M         |
|            | $\sigma_{\min} = 60 - 6b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| <b>b</b> ) | Explain with expression four conditions of stability of dam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Ans.       | 1. Condition to prevent Overturning of a dam Stability against Due to  Overturning (P.h/3) < W(b-X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01 M         |



|            | 2. Condition to prevent sliding of a dam ,Stability against Due to                                                                                                                                                                                                                                                 | 01 M    |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|            | Sliding $P \le F P \le \mu$ W factor of safety against sliding                                                                                                                                                                                                                                                     | OT M    |
|            | 3. Compression or Crushing of masonry                                                                                                                                                                                                                                                                              | 01 M    |
|            | 4. Condition to avoid tension in the masonry Stability against No Tension if                                                                                                                                                                                                                                       |         |
|            | e < (b/6) Where $e =$ eccentricity                                                                                                                                                                                                                                                                                 | 01 M    |
|            |                                                                                                                                                                                                                                                                                                                    |         |
| ,          | P = Compressive Load h = Ht. of dam W = Wt of dam b = Base width of dam                                                                                                                                                                                                                                            |         |
| <b>c</b> ) | Calculate maximum and minimum stresses at base of a rectangular column as shown in Fig No.2 . It carries a load 200 KN at 'P' on the outer edge of a column. Draw stress distribution diagram. $Y$                                                                                                                 |         |
|            | X 100mm<br>200mm                                                                                                                                                                                                                                                                                                   |         |
| Ans.       | Solution :-                                                                                                                                                                                                                                                                                                        |         |
|            | Area =200 x 100 =<br>20000 mm <sup>2</sup> P = 200kN<br>e = 50 mm<br>M = P x e = 200 x 50 =10000 kN mm<br>I =bd <sup>3</sup> /12 = 200x100 <sup>3</sup> /12 = 16.66x10 <sup>6</sup> = mm <sup>4</sup><br>y = 100/2 = 50 mm.<br>Where, Stresses<br>i) $6_0$ = P / A = 200x $10^3$ / $20000$ = 10 N/ mm <sup>2</sup> | 01 M    |
|            | ii) $6b = (M \times y) / I$                                                                                                                                                                                                                                                                                        | 0.1.7.7 |
|            | $(10000 \times 10^3) \times 50 / 16.66 \times 10^6 = 30.012 \text{ N/ mm}^2$<br>But, $6\text{max} = 60 + 6\text{b}$ , $6\text{min} = 60 - 6\text{b}$                                                                                                                                                               | 01 M    |
|            | $6\text{max} = 6_0 + 6b = 10 + 30.012 = 40.012 \text{ N/mm}^2$                                                                                                                                                                                                                                                     |         |
|            | $6\min = 6_0 - 6b = 10 - 30.012 = -20.012 \text{ N/mm}^2 \text{ (Tension)}$                                                                                                                                                                                                                                        | 01 M    |
|            |                                                                                                                                                                                                                                                                                                                    |         |



|      | stress distribution diagram as below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|      | o <sub>min</sub> + o <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01 M         |
|      | Stress distribution diagram at base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| d)   | Calculate the values of direct stress and bending stress at the base of chimney. Write interpretation of obtained values of stresses.  Use following data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|      | i) External diameter = 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|      | ii) Internal diameter = 2m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|      | iii) Height of chimney = 44m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|      | iv) Weight of masonry = 20 kN/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|      | v) Co-efficient of wind resistance = 0.60<br>vi)Wind pressure = 1 kN/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Ans. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|      | Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|      | Given = $d1=3m$ , $d2=2m$ , height of chimney h =44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|      | i) Area of the section = $A = (\pi/4) \times (3^2 - 2^2) = 3.926 \text{ m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|      | $I xx = I = \pi /64 (3^4 - 2^4) = 51.05 \text{ mm}^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
|      | Wind pressure $\neq P = 1 \text{ kN/m}^2 = 1000 \text{ N/m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|      | ii) Direct stress on the base $\sigma_0 = W / A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|      | $= A x h x \rho = (3.926 x 44 x 20) / A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01 M         |
|      | $=880 \text{ kN/m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UI IVI       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|      | iii) section modulus $Z = \pi / 32 \times (3^4 - 2^4) / 3 = 2.127 \text{ m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|      | iv) Total wind load P = C x P x projected area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|      | iv) Total wind load P = C x P x projected area<br>= 0.6 x P x D x h = 0.6 x 1 x 3 x 44 = 79.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|      | iv) Total wind load P = C x P x projected area<br>= 0.6 x P x D x h = 0.6 x 1 x 3 x 44 = 79.2<br>v) Moment on the base M= P x h/2 = 79.2 x 44 /2 = 1742.40 kNm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |
|      | iv) Total wind load P = C x P x projected area<br>= 0.6 x P x D x h = 0.6 x 1 x 3 x 44 = 79.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01 M         |
|      | iv) Total wind load $P = C \times P \times P$ projected area $= 0.6 \times P \times D \times D$ | 01 M<br>01 M |



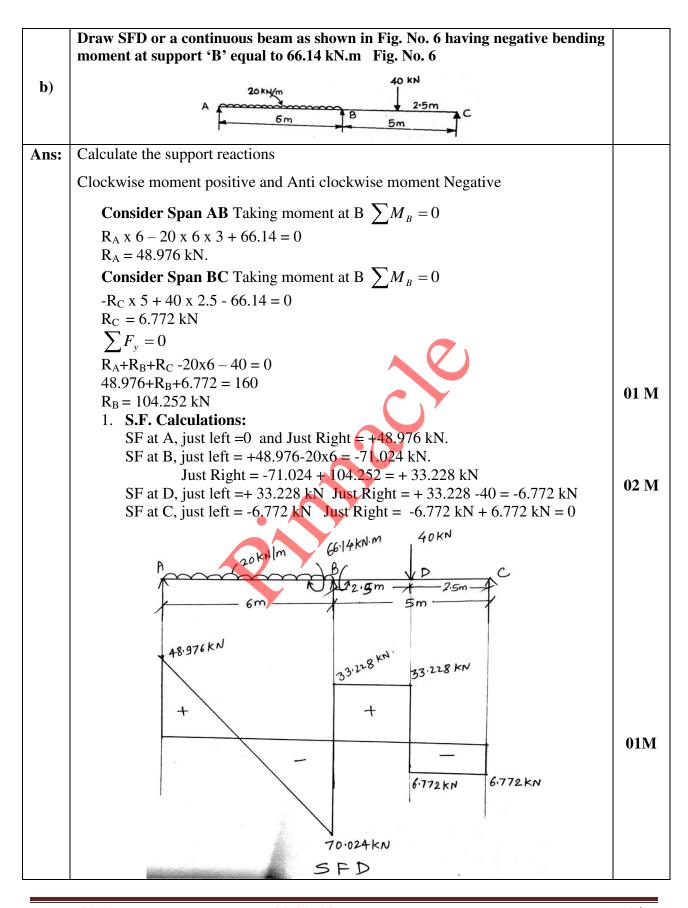
|            | 1/00/10 3/1 2                                                                 |      |
|------------|-------------------------------------------------------------------------------|------|
|            | <b>1699.18</b> N/mm <sup>2</sup>                                              |      |
|            |                                                                               |      |
|            |                                                                               | 01 M |
|            | $60.82 \text{ N/mm}^2$                                                        |      |
|            |                                                                               |      |
|            | Stress distribution diagram at base                                           |      |
| 3.         | Attempt any THREE of the following                                            | 12 M |
|            | Calculate the deflection under point load of a simply supported beam as shown |      |
|            | in figure No. 3 Take EI = constant. Use Macaulay's method.                    |      |
|            |                                                                               |      |
|            | 9 KN II man till bla en de de                                                 |      |
| <b>a</b> ) | AND THE PROPERTY OF THE PARTY OF                                              |      |
|            | A B                                                                           |      |
|            | 1m 2m                                                                         |      |
|            | Figure 3                                                                      |      |
| Ans:       | (i) (ii)                                                                      |      |
|            | 2 gKN                                                                         |      |
|            |                                                                               |      |
|            | A IVC I                                                                       |      |
|            | 1m 2 m                                                                        |      |
|            | $\chi$         |      |
|            | RA=6KN RB=3KN                                                                 |      |
|            |                                                                               |      |
|            |                                                                               |      |
|            | Taking moment at B $\sum M_B = 0$                                             |      |
|            | $R_A \times 3 - 9 \times 2 = 0$                                               |      |
|            | $R_A = 6 \text{ kN}$ . And $R_B = 3 \text{ kN}$                               |      |
|            | Macaulay's method                                                             |      |
|            | $EI \frac{d^2y}{dx^2} = M$ Differential Equation                              |      |
|            |                                                                               |      |
|            | $EI\frac{d^2y}{dx^2} = 6x - 9(x-1)$                                           | 01 M |
|            | $dx^*$                                                                        |      |
|            | N=1 Differentiating with respect to y                                         |      |
|            | Differentiating with respect to $x$                                           |      |
|            | $EI\frac{dy}{dx} = \frac{6x^2}{2} + C_1 - \frac{9(x-1)^2}{2}$ Slope Equation  |      |
|            | ax z                                                                          |      |
|            | 2.13                                                                          |      |
|            | EIy = $\frac{3x^3}{3} + C_1x + C_2 - \frac{9(x-1)^3}{6}$ Deflection Equation  |      |
|            | 3 6                                                                           |      |
|            |                                                                               |      |
|            | Calculate Constants of Integration $C_1$ and $C_2$                            |      |
|            | Consider boundary condition                                                   |      |
|            |                                                                               |      |



|            | 1) At $x=0$ , $y=0$ putting in deflection equation                                                        |         |
|------------|-----------------------------------------------------------------------------------------------------------|---------|
|            | EI (0) = $0 + C_1 \times 0 + C_2$                                                                         |         |
|            | $\mathbf{C_2} = 0$                                                                                        |         |
|            | 2) At $x = 3m$ , $y = 0$ putting in deflection equation                                                   | 01 M    |
|            | EI (0) = $3^3 + 3 C_1 + 0 - \frac{9}{6}(3-1)^3$                                                           | UI IVI  |
|            | $C_1 = -5$                                                                                                |         |
|            | Putting values of C <sub>1</sub> and C <sub>2</sub> in Slope and Deflection Equation.                     |         |
|            | $EI\frac{dy}{dx} = \frac{6x^2}{2} - 5 - \frac{9(x-1)^2}{2}$ Final Slope Equation                          |         |
|            |                                                                                                           | 01 M    |
|            | $EIy = \frac{3x^2}{3} - 5x - \frac{9(x-1)^2}{6}$ Final Deflection Equation                                |         |
|            | Calculate Deflection under point load                                                                     |         |
|            | At $x = 1m$ , $y = y_c$ putting in deflection equation.                                                   |         |
|            | EI $y_c = \frac{3(1)^3}{3} - 5(1) - 9(0)$                                                                 | 01 M    |
|            |                                                                                                           | V = -:- |
|            | $y_c = \frac{-4}{EI}$                                                                                     |         |
|            |                                                                                                           |         |
|            | Calculate fixed end moments and draw BMD for a fixed beam as shown in Fig.                                |         |
| <b>b</b> ) | 20kN 32kN  A 2m D 2m B                                                                                    |         |
| Ans:       | <del></del>                                                                                               |         |
|            | Assume beam is simply supported beam and calculate support Reactions.                                     |         |
|            | $\sum M_A = 0$ Clockwise moment positive and Anti clockwise moment Negative                               |         |
|            | $-R_B \times 6 + 20 \times 2 + 32 \times 4 = 0$                                                           |         |
|            | $R_B = 28 \text{ kN}$                                                                                     |         |
|            | $R_A + R_B = \text{Total load} = 20 + 32 = 52$                                                            |         |
|            | $R_A + 28 = 52$                                                                                           |         |
|            | $R_A = 24 \text{ kN}$                                                                                     |         |
|            | Calculate BM at C and D for simply supported beam                                                         | 04.7.   |
|            | $M_c = 24 \times 2 = 48 \text{ kN.m}$ and moment at D $M_D = 24 \times 4 - 20 \times 2 = 56 \text{ kN.m}$ | 01 M    |
|            | Calculate Fixed End Moments                                                                               |         |
|            |                                                                                                           |         |
|            |                                                                                                           |         |



|                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |  |  |  |  |   |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|---|
| N                                                                                          | $M_A = M_{A1} + M_{A2} = -\frac{W_1 a_1 b_1^2}{I_2^2} - \frac{W_2 a_2 b_2^2}{I_2^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |  |  |  |  |   |
|                                                                                            | Z L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |  |  |  |  |   |
|                                                                                            | $= -\frac{20x2x4^2}{6^2} - \frac{32x4x2^2}{6^2} = 17.78-14.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04 3 4 |  |  |  |  |   |
|                                                                                            | o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01 M   |  |  |  |  |   |
|                                                                                            | $M_A = -32.0 \text{ kN.m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |  |  |  |   |
| M                                                                                          | $M_{\rm B} = M_{\rm B1} + M_{\rm B2} = -\frac{W_1 a_1^2 b_1}{L^2} - \frac{W_2 a_2^2 b_2}{L^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |  |  |  |  |   |
| $20x2^2x4  32x4^2x2$                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |  |  |  |  |   |
| $= -\frac{20x2^2x4}{6^2} - \frac{32x4^2x2}{6^2} = -8.89-28.44$ $M_B = -37.33 \text{ kN.m}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |  |  |  |  |   |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |  |  |  |  | D |
|                                                                                            | ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |  |  |  |  |   |
|                                                                                            | 20KN 32KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |  |  |  |  |   |
|                                                                                            | $A = \frac{\sqrt{C}}{2m} + \frac{\sqrt{D}}{2m} + \frac{D}{2m} = \frac{D}{2m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |  |  |  |  |   |
| 1                                                                                          | $A = \frac{1}{2m} = \frac{1}{$ |        |  |  |  |  |   |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |  |  |  |  |   |
|                                                                                            | 48 KN M 56 KN M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |  |  |  |  |   |
|                                                                                            | 3723 KOLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |  |  |  |  |   |
|                                                                                            | 32 kN·m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |  |  |   |
|                                                                                            | - V-ve/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |  |  |   |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |  |  |  |  |   |
|                                                                                            | FINAL BMD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |  |  |  |  |   |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |  |  |  |  |   |
| C                                                                                          | Calculate fixed end moments and Draw BMD for a beam as shown in Fig. No. 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |  |  |  |  |   |
|                                                                                            | Jse first principle method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |  |  |  |  |   |
| <b>c</b> )                                                                                 | 9.6 k N/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |  |  |  |  |   |
|                                                                                            | A Jammann B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |  |  |  |  |   |
|                                                                                            | 5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |  |  |  |   |
|                                                                                            | 1 Assuma has in simply and the same of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |  |  |  |  |   |
| Ans:                                                                                       | 1. Assume beam is simply supported beam and calculate simply supported BM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |  |  |  |   |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |  |  |  |  |   |
| N                                                                                          | $M \max = M_{AB} = \frac{wL^2}{8} = \frac{9.6x5^2}{8} = 30.0kN.m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01 M   |  |  |  |  |   |
|                                                                                            | 2. Calculate Fixed end Moments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |  |  |  |  |   |
|                                                                                            | $M_A + M_B = \frac{-2a}{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |  |  |  |  |   |
|                                                                                            | a = Area of SS BM dia. = area of Parabola = $2/3$ bh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |  |  |  |  |   |
|                                                                                            | a = A1ea of SS BM dia. = a1ea of Parabola = 2/3 bif<br>$a = 2/3 \times 5 \times 30 = 100 \text{ kN.m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |  |  |  |  |   |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |  |  |  |  |   |
|                                                                                            | 141V 1141R — 2 - 40 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |  |  |   |
|                                                                                            | $M_A + M_B = \frac{-2x100}{5} = -40$ (I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |  |  |  |  |   |




|            | and $M_A+2$ $M_B=\frac{-6ax}{L^2}$ $x = C.G.$ of SS BM = $5/2 = 2.5m$ $M_A+2$ $M_B=\frac{-6x100x2.5}{5^2}=-60$ (II)  Solving Two Simultaneous Equations I and II $M_A = -20$ kN.m $M_B = -20$ kN.m  OR  Note: Fixed end moments can be calculated by using standard formula as formula is Derived using First Principle, hence if students solve problem using formula appropriate Marks shall be given $M_{AB} = -\frac{wL^2}{12} = -\frac{9.6x5^2}{12} = -20.0kN.m$ $M_{BA} = \frac{wL^2}{12} = +\frac{9.6x5^2}{12} = +20.0kN.m$ 3. Draw Final BM diagram by overlapping simply supported BM and Fixed | 01 M<br>01 M |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|            | end BM.  Sm  Sokn.m  20kn.m  20kn.m  20kn.m  Explain with sketch the effect of fixity on bending moment of a beam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 M         |
| d) i) Ans: | If simply supported beam is considered subjected to any pattern of loading, beam bends and slopes will developed at the ends. If however, the ends of beam is firmly built in supports i.e. ends are fixed, slopes at the supports are zero. Fixity at ends induces end moments. Due to fixity, deflection of beam at center of beam is also reduced as compared to simply supported beam.                                                                                                                                                                                                               | 01 M         |
|            | Simply supported beam  W1  W2  MA  Fixed Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01 M         |



| (ii) | State two advantages of fixed beam over simply supported beam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
|      | 1. End slopes of fixed beam are zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |  |  |  |
|      | 2. A fixed beam is more stiff, strong and stable than a simply supported beam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |  |  |  |  |
|      | 3. For the same span and loading, a fixed beam has lesser values of bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |  |  |  |  |
| Ans: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 02 M<br>for |  |  |  |  |
|      | moments as compared to a simply supported beam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | any 2       |  |  |  |  |
|      | 4. For the same span and loading, a fixed beam has lesser values of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |  |  |  |  |
|      | deflections as compared to a simply supported beam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |  |  |  |  |
| Q.4. | Attempt any THREE of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12          |  |  |  |  |
| a)   | State Clapeyron's theorem of three moments for continuous beam with same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |  |  |  |
| Ans: | and different EI  The claperon's theorm of three moment is applicable to two span continuous beams. It state that "For any two consecutive spans of continuous beam subjected to an external loading and having uniform moment of inertia, the support moments M <sub>A</sub> , M <sub>B</sub> and M <sub>C</sub> at supports A,B and C respectively are given by following equation                                                                                                                                                                                                    | 01 M        |  |  |  |  |
|      | given by following equation $M_A + 2M_B(L_1 + L_2) + M_C L_2 = -\left[\frac{6A_1X_1 - L_2}{L_1}\right] - \left[\frac{6A_2X_2}{L_2}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01 M        |  |  |  |  |
|      | If the moment of inertia is not constant then claperon's theorem can be stated in the form of following equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 M        |  |  |  |  |
|      | $M_A \frac{L_1}{I_1} + 2M_B \left(\frac{L_1}{I_1} + \frac{L_2}{I_2}\right) + M_C \frac{L_2}{I_2} + M_C \frac{L_2}{I_2} = -\left[\frac{6A_1X_1}{L_1I_1} + \frac{6A_2X_2}{L_2I_2}\right]$ Where L <sub>1</sub> and L <sub>2</sub> are length of span AB and BC respectively.  I <sub>1</sub> and I <sub>2</sub> are moment of inertia of span AB and BC respectively.  A <sub>1</sub> and A <sub>2</sub> are area of simply supported BMD of span AB and BC respectively.  X <sub>1</sub> and X <sub>2</sub> are distances of centroid of simply supported BMD from A and C respectively. | 01 M        |  |  |  |  |







|            | Calculate distribution factors for the members OA, OB, OC and OD for the joint 'O' as shown in Fig. No. 7. |                        |                                                           |                    |                             |              |  |  |
|------------|------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------|--------------------|-----------------------------|--------------|--|--|
|            | Joint C                                                                                                    | o do silo wii          | m 1 ig. 1 (0. 7)                                          | B                  |                             |              |  |  |
| c)         |                                                                                                            |                        |                                                           | 3m (2)             |                             |              |  |  |
|            |                                                                                                            |                        | A 4m 2D                                                   | 0 3m C             |                             |              |  |  |
|            | 2m 🗊                                                                                                       |                        |                                                           |                    |                             |              |  |  |
| Ama        | Taint                                                                                                      | Mamban                 | Ct:ffrage Feeter                                          | D Tatal atiffeess  | Distribution                |              |  |  |
| Ans:       | Joint                                                                                                      | Member                 | Stiffness Factor                                          | Total stiffness    | Distribution<br>Factor      |              |  |  |
|            |                                                                                                            | OA                     | $\begin{array}{c c} K_{OA} = \\ 4EI & 4E(2I) \end{array}$ | $\sum K_o = 2EI +$ | $DF_{OA} = \frac{2EI}{7EI}$ |              |  |  |
|            |                                                                                                            |                        | $\frac{4EI}{L} = \frac{4E(2I)}{4}$                        | 2EI + 3EI $= 7EI$  | DF <sub>OA</sub> =0.286     | 01 M<br>for  |  |  |
|            |                                                                                                            |                        | = 2 <i>EI</i>                                             | . 7                |                             | each<br>D.F. |  |  |
|            |                                                                                                            | OB                     | $K_{OB} = \frac{3EI}{L}$                                  |                    | $DF_{OB} = \frac{2EI}{7EI}$ | <b>D.F.</b>  |  |  |
|            | О                                                                                                          |                        | $=\frac{3E(2I)}{3}=2EI$                                   | 70'                | $DF_{OB} = 0.286$           |              |  |  |
|            |                                                                                                            | OC                     | $K_{OC} = \frac{3EI}{L}$                                  |                    | 3 <i>EI</i>                 |              |  |  |
|            |                                                                                                            |                        | _                                                         |                    | $DF_{OC} = \frac{3EI}{7EI}$ |              |  |  |
|            |                                                                                                            |                        | $=\frac{3E(3I)}{3}=3EI$                                   |                    | DF <sub>OC</sub> =0.428     |              |  |  |
|            |                                                                                                            | OD                     | K <sub>OD</sub> = 0                                       |                    | DF <sub>OD</sub> =0         |              |  |  |
|            | Calculate support moments and Draw BMD of a beam as shown in Fig. No. 8. Use moment distribution Method.   |                        |                                                           |                    |                             |              |  |  |
|            |                                                                                                            | -                      | 20 KN                                                     | 30 I               | KN                          |              |  |  |
| <b>d</b> ) |                                                                                                            |                        | A 3m                                                      | mm B               | 3                           |              |  |  |
|            |                                                                                                            |                        |                                                           | 7. 7               |                             |              |  |  |
| Ans:       | Fig. No. 8                                                                                                 |                        |                                                           |                    |                             |              |  |  |
|            | 1. Calculate simply supported BM for span AB $m_{AB} = \frac{wL^2}{8} = \frac{20x3^2}{8} = 22.5kN.m$       |                        |                                                           |                    |                             |              |  |  |
|            |                                                                                                            | $m_{AB} - \frac{1}{8}$ | - = - 22.3kIV                                             | v .111             |                             |              |  |  |
|            |                                                                                                            |                        | Fixed end Moment for                                      | or span AB         |                             |              |  |  |
|            | $M_{AB} =$                                                                                                 | $-\frac{wL^2}{12} = -$ | $\frac{20x3^2}{12} = -15kN.m$                             |                    |                             |              |  |  |
|            |                                                                                                            |                        |                                                           |                    |                             |              |  |  |



|              | $M_{BA} = \frac{wL^2}{12} = +\frac{20x3^2}{12}$                 | !<br>- = +  | -15 <i>kN.m</i>              |                          | 01 M       |
|--------------|-----------------------------------------------------------------|-------------|------------------------------|--------------------------|------------|
|              | $M_{BC} = -30 \text{ x } 1 = -30 \text{ k}$ Distribution factor |             | $DF_{BA} = 1.0, DF_{BC} = 0$ | as it is overhang  Joint |            |
|              | AB                                                              | BA          | BC CB                        | Member                   |            |
|              |                                                                 | 1.0         | 0                            | Distribution factor      | <b>7</b>   |
|              | -15 +                                                           | 15          | -30 0                        | Fixed end moments        | Table 02 M |
|              |                                                                 | <b>⊦</b> 15 |                              | Balancing at B           |            |
|              | +7.5                                                            |             |                              | Carryover to A           |            |
|              | -7.5 +                                                          | 30          | -30 0                        | Final Moments            |            |
|              | 7.5 KN m                                                        |             | 22.5 KN·m 30 KN·r Ve         | m — m                    | 01 M       |
| (i)          | Draw one Sketch of the Deficient frame                          | ie to       | Howing.                      |                          |            |
| Ans:         |                                                                 |             |                              |                          | 01M        |
| (ii)<br>Ans: | Redundant frame                                                 |             |                              |                          |            |
| AHS.         |                                                                 | <u> </u>    |                              |                          | 01 M       |



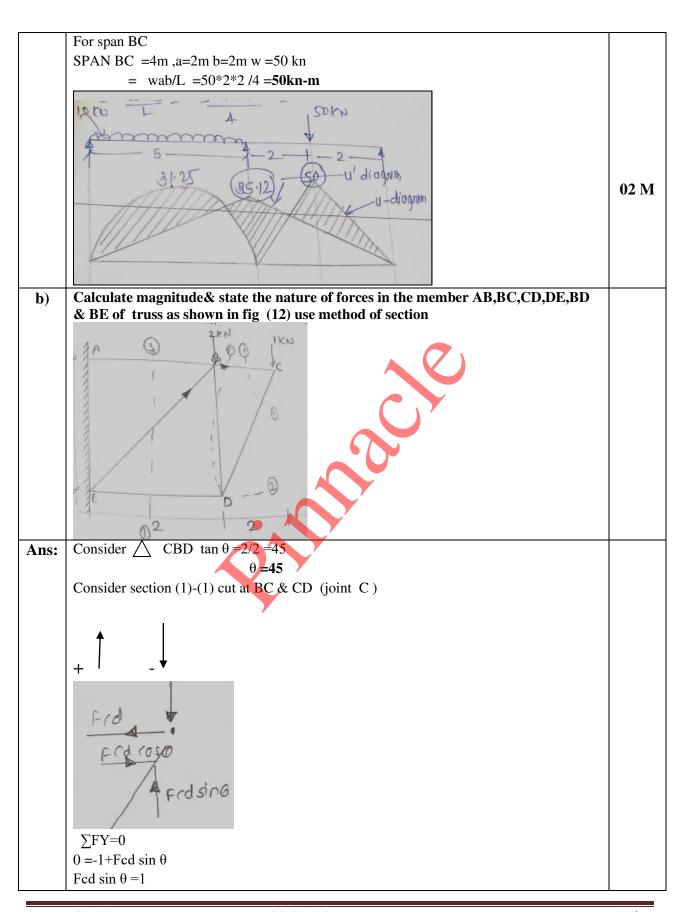
| (iii) | Symmetrical portal frame                                                                                                                                                                                                   |                       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Ans:  | w/unit length W                                                                                                                                                                                                            |                       |
|       | Rigid joint L <sub>2</sub> Rigid joint L <sub>2</sub> Rigid joint L <sub>3</sub> (i) Symmetrical portal frame fixed at the base (ii) Symmetrical portal frame simply supported (hinged) at the base                        | Any<br>01 one<br>mark |
| (iv)  | Unsymmetrical portal frame                                                                                                                                                                                                 |                       |
| Ans:  | (i) Unsymmetrical portal frame hinged at the base  (ii) Unsymmetrical portal frame one end fixed, other hinged  Note- Other than these above sketches if any relevant sketch is drawn, the marks are given accordingly.    | Any<br>01 one<br>mark |
| Q.5.  | Attempt any TWO of the following                                                                                                                                                                                           | 12 M                  |
| Ans:  | Calculate Maximum Deflection of Simply Supported Beam as Shown In Fig no-9.  take E=200gpa I=2x 10 Use Macaulay's Method.                                                                                                  |                       |
| Alls: | E=200 GPA =200x10 <sup>3</sup> =N/mm <sup>2</sup><br>E=200x10 <sup>3</sup> =2x10 <sup>8</sup> KN/m <sup>2</sup><br>I=2x10 <sup>8</sup> = mm <sup>4</sup><br>I=2x10 <sup>-4</sup> m <sup>4</sup><br>1)Find support Reaction | 01 M                  |



| RA = RB = W1/2 = 20X3/2 = 30KN                                                                    |      |
|---------------------------------------------------------------------------------------------------|------|
| 2)Find slope &deflection                                                                          |      |
| EI $d^2y/dx^2 = M$ -Differential equation                                                         |      |
| Taking moment at section X-X, and at distance x from A                                            |      |
|                                                                                                   |      |
| $EI d^2 y / dx^2 = 30x - 20x^2 / 2$                                                               |      |
| •                                                                                                 |      |
| $EI d^2y/dx^2 = 30x \left  10x^2 \right $                                                         |      |
|                                                                                                   |      |
| Integrating w. r to x                                                                             |      |
| EI dy /dx = $30 \times \frac{2}{2} + C1 \left  -10 \times \frac{3}{3} \right $                    |      |
|                                                                                                   |      |
| EI dy/dx= $15x^2$ +C1 $\left  -3.33x^3 \right $ slope equation                                    | 01 M |
| stope equation                                                                                    |      |
| Again integrating w.r to x                                                                        |      |
| EIy= $15x^3/3+C1x+C2-3.33x^4/4$                                                                   |      |
| Ely= $5x^3$ +C1x + C2 -0.832 x <sup>4</sup> Deflection equation                                   |      |
| Ely=5x +C1x + C2 -0.832 x Deflection equation                                                     | 01 M |
| To find C2                                                                                        |      |
| Boundary condition                                                                                |      |
| x=0 Y=0 put in <b>Deflection Equations</b> .                                                      |      |
| E1(0) = 5(0) + c1(0) + c2 - 0.83(0)4                                                              |      |
| C2=0                                                                                              |      |
| To find C1                                                                                        |      |
| Boundary condition                                                                                |      |
| At x=3 y=0 put in deflection equation                                                             |      |
| 0=05(3)3+c1x3+0-0.832*3                                                                           |      |
| 3C1=67.608                                                                                        |      |
| C1= -22.53                                                                                        | 01 M |
| Put this value in Deflection equation                                                             |      |
| $EIy = 5x^{3} - 22.53 \times -0.832x^{4}$                                                         |      |
| To find Maximum Deflection                                                                        |      |
| Put $x=L/2 = 3/2 = 1.5 \text{ m}$                                                                 |      |
| $EIY = 5(1.5)^3 - 22.53 * 1.5 - 0.832(1.5)^4$                                                     |      |
| EIY= -21.132                                                                                      |      |
|                                                                                                   | 01 M |
| $E=200 \text{ GPA} = 200 \times 10^3 = \text{N/mm}^2$                                             |      |
| $E = 200 \times 10^3 = 2 \times 10^8 \text{ KN/m}^2 \text{ (note:- W is in KN/m and L is in m.)}$ |      |
| $E = 200 \times 10 = 2 \times 10 \text{ KN/m} \text{ (note:- W 1S 1n KN/m and L 1S 1n m.)}$       |      |



|            | 8 4                                                                                                                                           |       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
|            | $I=2x10^8 = mm^4$                                                                                                                             |       |
|            | $I=2x10^{-4}m^4$                                                                                                                              |       |
|            |                                                                                                                                               |       |
|            | Y= -21.132/EI<br>-4 8                                                                                                                         |       |
|            | $= 21.132/(200x10^{-4} * 200x10^{8})$                                                                                                         |       |
|            | Y max = 0.0005288                                                                                                                             | 01 M  |
| <b>L</b> ) | Y max=0.528 mm ( - ve indicate downward deflection)  Calculate Maximum Slope & Maximum Deflection Of A Cantilever Beam As                     |       |
| <b>b</b> ) | Shown In Fig                                                                                                                                  |       |
|            |                                                                                                                                               |       |
|            | A Jammmmm B                                                                                                                                   |       |
|            | 2m                                                                                                                                            |       |
| Ans:       | Given :-                                                                                                                                      |       |
|            | $E=100 	ext{ GPA}=100 	ext{X} 10^3 	ext{ N/mm}^2$                                                                                             |       |
|            | Width =100 mm ,depth=200mm                                                                                                                    |       |
|            | $I=bd^3/12 =100*(200)^3/12 \neq 66.66\times10^6$                                                                                              |       |
|            |                                                                                                                                               |       |
|            | Maximum deflection =Deflection due to UDL+ deflection due to point load                                                                       |       |
|            | YB=yB1+yB2                                                                                                                                    |       |
|            | $Yb1=-WL^4 / 8EI = (-2X(2000)^4) / (8X100 * 10^3 * 66.66X10^6)$                                                                               |       |
|            | =-0.600 mm                                                                                                                                    | 1M    |
|            | $Yb2 = -WL^{4}/3EI = (-5000X(2000)^{3})/(3*100*66.66*10^{6}*10^{3})$                                                                          |       |
|            | = -2.01 mm                                                                                                                                    | 1M    |
|            | YB = YB1+YB2 = -(0.6+2.01) = -2.6  mm                                                                                                         | 1 M   |
|            | maximum slope = slope due to UDL + slope due to point load                                                                                    |       |
|            | $\theta = \theta + \theta 2$                                                                                                                  |       |
|            | $\theta 1 = W L^{3} / 6 EI = (2*2000^{3} / 6*100*10^{3} * 66.66 X 10^{6})$                                                                    |       |
|            | =0.0004 Radian                                                                                                                                | 1M    |
|            | $\theta 2 = W L^2 / 2 EI = (5000*2000^2 / 2*100 X 10^3 * 66.66*10^6)$                                                                         |       |
|            | $62 = \text{W L } / 2 \text{ E1} = (3000^{\circ} 2000 / 2^{\circ} 100 \text{ A} 10^{\circ} \circ 60.00^{\circ} 10^{\circ})$<br>=0.0015 Radian | 1M    |
|            | $\theta = 0.0004 + 0.0015 = 0.0019$ Radian                                                                                                    |       |
|            | deflection Maximum =2.6mm ( -ve indicates the downward deflection )                                                                           |       |
|            | Maximum slope =0.0019 Radian                                                                                                                  | 1 M   |
| <u> </u>   |                                                                                                                                               | # 17# |




| 5)   | Calculate Support Moments For A Doom As Chaum In Fig No A0                             |          |
|------|----------------------------------------------------------------------------------------|----------|
| c)   | Calculate Support Moments For A Beam As Shown In Fig No-08.  Use Three Moment Theorem. |          |
|      | Ose Three Moment Theorem.                                                              |          |
|      |                                                                                        |          |
|      |                                                                                        |          |
|      | (20K10/m   30KN                                                                        | )        |
|      | 10 1 00 x B                                                                            |          |
|      | To A ferrammy Ac                                                                       |          |
|      | 1 3 m 1 1 m k                                                                          |          |
|      | 1-10-14                                                                                | 13       |
|      | 1 1 1                                                                                  |          |
| Ans: | TO find support moments and reactions                                                  |          |
|      | B.M at mid span AB = $WL^2 / 8 = 20(3)^2 / 8$                                          |          |
|      | = 22.5  KN.M                                                                           |          |
|      | Consider the cantilever action point BC                                                |          |
|      | MB = -30X1 = -30KNm                                                                    |          |
|      | Since the end A is fixed assume as imaginary span A-AO at left of A                    | 01 M     |
|      | For span AO - A                                                                        |          |
|      | 6  ao* o  / L0 = 0                                                                     |          |
|      | Span AO A B                                                                            |          |
|      | A1 = Area Of A Diagram = $(2/3) * 3 * 22.5 = 45$                                       |          |
|      | X1 = centroidal distance of a diagram = $3/2$ = $1.5$ m                                |          |
|      | A1 X1 = 45*1.5 = <b>67.5</b>                                                           | 01 M     |
|      | Applying clapeymn's theorem of three moment for span A Ao & AB we get                  | 0435     |
|      | Mo L0+2MA (Lo+L1) +MBL1 =- $[6a0X0/Lo + 6a1x1/L1]$                                     | 01 M     |
|      | 0+2MA (0+3) + (-30) (3) = [0+6X67.5/3]                                                 |          |
|      | 6 MA -90 =-135                                                                         | 01 M     |
|      | 6 MA = -135+90=-45                                                                     | UI WI    |
|      | MA=-7.5 KN-m                                                                           |          |
|      | Consider Span ABC                                                                      |          |
|      | A (20KN/m 30                                                                           |          |
|      | 1 Zot NIR)                                                                             |          |
|      | <b>4</b>                                                                               |          |
|      | 7.5 7 9K'Y                                                                             |          |
|      | 130                                                                                    |          |
|      |                                                                                        |          |
|      | Take moment @ a                                                                        |          |
|      | O=20*3*1.5+30+30*4 -RB*3                                                               | 01 1/4   |
|      | RB*3 = 240 $RB=80KN$ .                                                                 | 01 M     |
|      | $\sum$ fy = 0                                                                          |          |
|      | 0 = RA + RB - 20X3 - 30                                                                |          |
|      | 0=RA+80-60-30                                                                          | 01 M     |
|      | RA = 10KN                                                                              | V 111    |
|      |                                                                                        | <u>I</u> |



| 2.6. | Attempt Any Two of the fo                                     | ollowing                                         |                      | 12 M  |
|------|---------------------------------------------------------------|--------------------------------------------------|----------------------|-------|
| a)   | calculate support moment                                      | for a spam as shown in                           | fig no.11 Use moment |       |
|      | distribution method                                           |                                                  |                      |       |
|      | 10 KN                                                         | Im .                                             |                      |       |
|      | (                                                             | SOKN                                             |                      |       |
|      | Ammin                                                         | 2m C                                             |                      |       |
|      | (2I)                                                          | 4 (I)                                            |                      |       |
|      | 5 m                                                           | 400                                              |                      |       |
|      |                                                               |                                                  |                      |       |
| ns:  | Solution :- Assume span AB &                                  | BC as a fixed beam and find                      | fixed end moment     |       |
|      | $M AB = -WL^2/12 = -10(5)^2/$                                 |                                                  |                      |       |
|      | _                                                             |                                                  |                      |       |
|      | $M BA = WL^2/12 = 10(5)^2/12$                                 |                                                  |                      |       |
|      | $M BC = -Wab^2/L^2 = 50(2) (2)$                               | $\frac{2}{4^2} = -25$ KN-m                       |                      | 01 N  |
|      | $M CB = + Wab^2/L^2 = 5*2*2^2$                                | _                                                |                      | 01 N  |
|      |                                                               |                                                  | •                    |       |
|      | To find the Stiffness factor a $K BA = 3EI/L AB = 3E(2I)/5$ : |                                                  |                      |       |
|      | K BC = 3EI/LBC = 3EI/4 = 0                                    |                                                  |                      |       |
|      | $\Sigma$ K=1.2EI+0.75EI= <b>1.95</b> EI                       | .73 EI                                           |                      |       |
|      | Distribution Factor                                           |                                                  |                      |       |
|      | DFBA=KBA/ $\Sigma$ K =1.2EI/1.95                              | EI=0.62                                          |                      | 01 N  |
|      | DFBC = KBC/ $\Sigma$ K =0.75EI/1.9                            |                                                  |                      |       |
|      | Point                                                         | A B                                              | С                    |       |
|      | Member                                                        | AB                                               | BC CB                |       |
|      | 1120111002                                                    | BA                                               |                      |       |
|      | Distribution factor                                           | 0.62                                             | 0.38                 |       |
|      | Fixed end moment                                              | -20.83                                           | -25 25               |       |
|      |                                                               | 20.83                                            |                      |       |
|      | Release support A& C                                          | <del>-                                    </del> | -25                  |       |
|      | and then carry over from                                      | +20.83                                           |                      |       |
|      | A to B from C to B                                            |                                                  |                      | 0.0.3 |
|      |                                                               |                                                  | -12.5                | 02 N  |
|      |                                                               | 10.415                                           |                      |       |
|      | Initial moment                                                | 0                                                | -37.5                |       |
|      |                                                               | 31.245                                           |                      |       |
|      | Ist distribution C balance                                    | +3.87                                            | +2.37                |       |
|      | В                                                             |                                                  |                      |       |
|      | Final moment                                                  | +35.12                                           | -35.12               |       |
|      | Assume span AB and BC to b                                    | e simply supported beam and fi                   | nd free BM.          |       |
|      | -                                                             | 0KN/m                                            |                      |       |
|      | M max =w1 $^2$ /8 =10*(5) $^2$ /8 =                           |                                                  |                      |       |
|      | 1VI III A - WI / O - IU (3) / O -                             | -01,20 IXIVIII                                   |                      |       |







| End-1 /1 IZM (C)                                                                                                                           |                                                                                        |                                    |              |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------|--------------|
| Fcd=1.41 KN (C)                                                                                                                            |                                                                                        |                                    |              |
| $\Sigma$ FX=0                                                                                                                              |                                                                                        |                                    |              |
| $0 = \text{Fcd } \cos \theta - \text{Fcb}$                                                                                                 |                                                                                        |                                    |              |
| Fcb = Fcd $\cos \theta$                                                                                                                    |                                                                                        |                                    |              |
| $= 1.41 \cos 45$                                                                                                                           |                                                                                        |                                    |              |
| =0.997                                                                                                                                     |                                                                                        |                                    | 02 M         |
| = 1KN(T)                                                                                                                                   |                                                                                        |                                    | 02 111       |
| = IKN(I)                                                                                                                                   |                                                                                        |                                    |              |
| Consider section (2)-(2) of                                                                                                                | cut at CD,BC,ED                                                                        |                                    |              |
| Consider right hand side                                                                                                                   | , ,                                                                                    |                                    |              |
|                                                                                                                                            |                                                                                        |                                    |              |
|                                                                                                                                            |                                                                                        |                                    |              |
| Fedsir                                                                                                                                     | ra                                                                                     |                                    |              |
| FBd &                                                                                                                                      | 1 =                                                                                    |                                    |              |
| fed o                                                                                                                                      | 7010                                                                                   |                                    |              |
| C 1                                                                                                                                        | 4                                                                                      | <b>7</b>                           |              |
| Fed D                                                                                                                                      |                                                                                        |                                    |              |
|                                                                                                                                            | <b>F</b> 6 0                                                                           |                                    |              |
|                                                                                                                                            | $\sum_{n=1}^{\infty} fy = 0$                                                           |                                    | 02 M         |
|                                                                                                                                            | $0=-1$ -Fcd sin $\theta$ +                                                             |                                    | 02 111       |
|                                                                                                                                            | Fbd=1+Fcd sin                                                                          | 15                                 |              |
|                                                                                                                                            | Fbd=2(T)                                                                               |                                    |              |
| $\sum fx=0$                                                                                                                                | Y                                                                                      |                                    |              |
| $0 = - \text{Fcd } \cos \theta + \text{Fed}$                                                                                               |                                                                                        |                                    |              |
| $1.41 \cos 45 = \text{Fed}$                                                                                                                |                                                                                        |                                    |              |
| Fed =1.41 cos 45                                                                                                                           |                                                                                        |                                    |              |
| Fed=1 kN(c)                                                                                                                                |                                                                                        |                                    |              |
|                                                                                                                                            |                                                                                        |                                    |              |
| Consider section                                                                                                                           | (2) (2) take manual at (2)                                                             | Δ                                  |              |
|                                                                                                                                            | 1 (3)-(3), take moment at @                                                            | A                                  |              |
| 0=Fbe cos 45 +F                                                                                                                            |                                                                                        | A                                  |              |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe                                                                                                           | ed *2 +2*2+1*4                                                                         | A                                  | 0135         |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe<br>F be =7.092 (-v                                                                                        |                                                                                        | A                                  | 01 M         |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe<br>F be =7.092 (-v<br>$\sum fx=o$                                                                         | ed *2 +2*2+1*4<br>/e indicate compressive)                                             | A                                  | 01 M         |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe<br>F be =7.092 (-v<br>$\sum$ fx=o<br>0= -fab+feb cos4                                                     | ed *2 +2*2+1*4  ve indicate compressive)  5 +fed                                       | A                                  | 01 M         |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe<br>F be =7.092 (-v<br>$\sum$ fx=o<br>0= -fab+feb cos4<br>Fab =7.092X CO                                   | ed *2 +2*2+1*4  ve indicate compressive)  5 +fed                                       | A                                  |              |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe<br>F be =7.092 (-v<br>$\sum$ fx=0<br>0=-fab+feb cos4                                                      | ed *2 +2*2+1*4  ve indicate compressive)  5 +fed                                       | A                                  | 01 M<br>01 M |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe<br>F be =7.092 (-v<br>$\sum$ fx=o<br>0= -fab+feb cos4<br>Fab =7.092X CO<br>Fab =6.014 (T)                 | ed *2 +2*2+1*4  /e indicate compressive)  5 +fed  9S 45 +1                             |                                    |              |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe<br>F be =7.092 (-v<br>$\sum$ fx=0<br>0= -fab+feb cos4<br>Fab =7.092X CO<br>Fab =6.014 (T)                 | ed *2 +2*2+1*4  ve indicate compressive)  5 +fed 0S 45 +1  FORCE (KN)                  | NATURE                             |              |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe<br>F be =7.092 (-v<br>∑fx=o<br>0= -fab+feb cos4<br>Fab =7.092X CO<br>Fab =6.014 (T)<br>MEMBER<br>AB       | ed *2 +2*2+1*4  /e indicate compressive)  5 +fed  9S 45 +1                             | NATURE<br>TENSION                  |              |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe<br>F be =7.092 (-v<br>∑fx=o<br>0= -fab+feb cos4<br>Fab =7.092X CO<br>Fab =6.014 (T)<br>MEMBER<br>AB<br>BC | ed *2 +2*2+1*4  ve indicate compressive)  5 +fed 0S 45 +1  FORCE (KN) 6.014 1          | NATURE<br>TENSION<br>TENSION       |              |
| 0=Fbe cos 45 +F 10 = 1.41 Fbe F be =7.092 (-v  ∑fx=o 0= -fab+feb cos4 Fab =7.092X CO Fab =6.014 (T)  MEMBER  AB BC CD                      | ed *2 +2*2+1*4  ve indicate compressive)  5 +fed 0S 45 +1  FORCE (KN)                  | NATURE TENSION TENSION COMPRESSION |              |
| 0=Fbe cos 45 +F<br>10 = 1.41 Fbe<br>F be =7.092 (-v<br>∑fx=o<br>0= -fab+feb cos4<br>Fab =7.092X CO<br>Fab =6.014 (T)<br>MEMBER<br>AB<br>BC | ed *2 +2*2+1*4  /e indicate compressive)  .5 +fed  .S 45 +1  FORCE (KN)  6.014  1 1.41 | NATURE<br>TENSION<br>TENSION       |              |



c) calculate magnitude &state the nature of forces in member AB,BC,CD,AD&BD Of a truss as shown in fig. use method of joints.

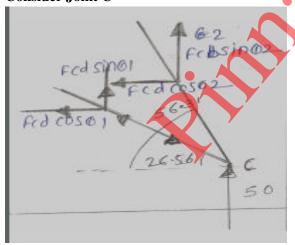
 $\theta 2 = \tan \theta \ 2 = 3/2$ 



Ans:  $\sum fy = 0$ 

RA+RC =100, due to symmitricity

RA=RC=W/2=100/2=50KN


Consider joint C

 $\theta$  1 = tan  $\theta$  1 = 1/2

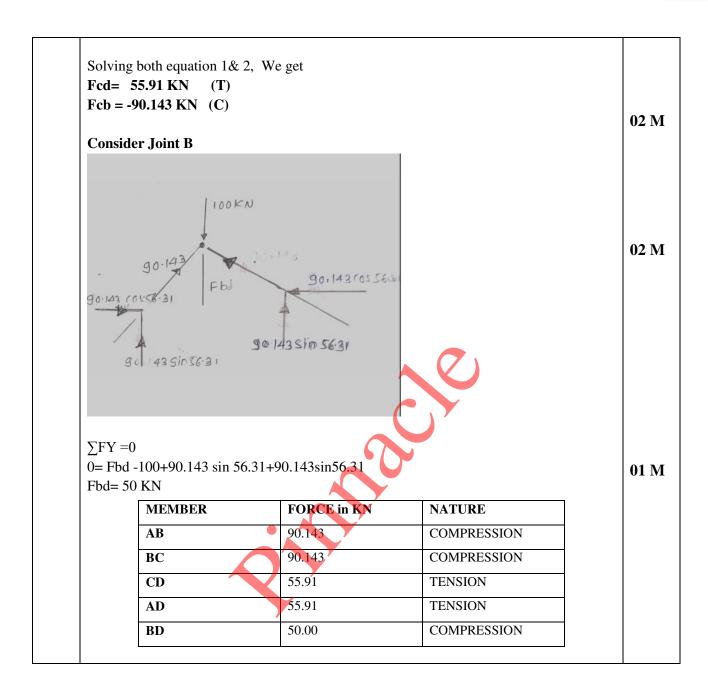
 $\theta$  1 = 26. 56  $\theta$ 2 = 56.31

01 M

Consider Joint C



 $\sum$ Fx= 0 fcd cos  $\theta$  1 +fcb cos  $\theta$  2= 0 0.8944 fcd +0.55fcb= 0


 $\sum$  fy =0

 $0=50+\text{fcd sin }\theta 1+\text{fcb sin }\theta 2$ 

 $-50 = \text{fcd sin } \theta 1 + \text{fcb sin } \theta 2$ 

-50=0.4471fcd+0.832 fcb



