MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

 (Autonomous)(ISO/IEC -270001 - 2005 certified)

WINTER -2019 EXAMINATION SUBJECT CODE: 22402
 MODEL ANSWER

Important Instructions to examiners:

1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language error such as grammatical, spelling errors should not be given more importance.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidate's answer and model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.

\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { Que. } \\
\text { NO } \\
\hline
\end{gathered}
\] \& Answer with question \& Mark \\
\hline Q. 1 \& Attempt any FIVE of the following \& 10 M \\
\hline a) \& Define core of section. - \& \\
\hline Ans. \& \begin{tabular}{l}
Core of a section: Core of the section is that portion around the centroid in within which the line of action of load must act, so as to produce only compressive stress is called as core of the section. It is also defined as the region or area within which/if load is applied, produces only compressive resultant stress. If Compressive load is applied, the there is no tension anywhere in the section.
\[
\mathrm{emax}=\mathrm{d} / 8
\]
\[
\mathrm{e}=\text { Core of section }
\] \\
For Circular section \\
For rectangular section
\end{tabular} \& 01 M

01 M

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline b) \& State the condition for no tension in the column section \& \\
\hline Ans. \& \begin{tabular}{l}
Condition for no tension in the column section \\
\(\sigma o=\) Direct stress and \(\sigma_{b}=\) Bending stress \\
,if \(\sigma o>\sigma_{b}\) the resultant stress is compressive, If \(\sigma o=\sigma_{b}\) the minimum stress is zero and the maximum stress is 260 , the stress distribution is compressive . but \(\sigma o<\sigma_{b}\) the stress is partly compressive and partly tensile. A small tensile stress at the base of a structure may develop tension cracks. Hence for no- tension condition, direct stress should be greater than or equal to bending stress. \(\sigma o>=\sigma_{b}\)
\[
\mathrm{P} / \mathrm{A}=\mathrm{M} / \mathrm{Z}
\] \\
P/A = Pxe/Z , e = <Z/A Hence for no -tension condition, eccentricity should be less than Z/A
\end{tabular} \& \begin{tabular}{l}
01 M \\
01 M
\end{tabular} \\
\hline c) \& State expression for deflection of simply supported beam carrying point load at midspan. \& \\
\hline Ans. \& \begin{tabular}{l}
A simply supported beam of span \(L\) carrying a central point load \(F\) at midspan \\
Tofindthe maximum deflection atmid-span, we set \(x=L / 2\) in the equation and obtain , maximum deflection \(=\mathrm{Yc}\)
\[
\mathrm{Yc}=\mathrm{Y} \max =\mathrm{FL}^{3} / 48 \mathrm{EI}
\]
\end{tabular} \& \begin{tabular}{l}
01 M \\
01 M
\end{tabular} \\
\hline d) \& State the values of maximum slope and maximum deflection for a cantilever beam of span ' \(L\) ' carrying a point load ' \(W\) ' at the free end \(. E I=\) constant \& \\
\hline Ans. \& \[
\begin{aligned}
\& \text { Maximum slope }=\theta_{\mathrm{B}}=\mathrm{dy} / \mathrm{dx}=\mathrm{WL}^{2} / 2 \mathrm{EI} \\
\& \text { Maximum deflection }=\mathrm{Y}_{\mathrm{B}}=-\mathrm{WL}^{3} / 3 \mathrm{EI}
\end{aligned}
\] \& 01 M

01 M

\hline
\end{tabular}

e)	Compare a simply supported beam and a continuous beam w.r.t deflected shape of a beam.	
Ans.	The firm of a curve to which the longitudinal axis of the beam bends after loading is called elastic curve or deflected shape of the beam. In the figure shows the deflected shape for various types of continuous beam. The deflected shape is shown by a dotted curve. Deflected shape simply supported beam and continuous beam (i) Continuous beam with simply supported ends (ii) Continuous beam with one end fixed and other simply supporte (iii) Continuous beam with both ends fixed (iv) Continuous beam with end span overhanging	01 M 01 M (Any one sketc h)
f)	Write the values of stiffness factor for beams. i) Simply supported at both ends ii)/fixed at one end simply supported at other end	
Ans.	i) Stiffness factor for a beam Simply supported at both the ends = 3EI/L ii) Stiffness factor for a beam fixed at one end and simply supported at other end $=4 \mathrm{EI} / \mathrm{L}$	$\begin{aligned} & 01 \mathrm{M} \\ & 01 \mathrm{M} \end{aligned}$
g)	Make the following truss perfect by adding or removing the members, if required as shown in fig. No. 1 (i) (ii) Fig. No. 1	

Ans.	For i) $\mathrm{n}=5 \mathrm{j}=4$ $2 \mathrm{j}-3=2 \times 4-3=5$.since $\mathrm{n}=2 \mathrm{j}-3$ hence the frame is Perfect frame iii) $\mathrm{n}=5, \mathrm{j}=4,2 \mathrm{j}-3=2 \times 4-3=$ since $\mathrm{n}=2 \mathrm{j}-3$ hence the frame is Perfect frame (ii)	$\begin{aligned} & 01 \mathrm{M} \\ & 01 \mathrm{M} \end{aligned}$
Q. 2	Attempt any THREE of the following:	12 M
a)	Explain the effect of eccentric load with sketch w.r.t stresses developed	
Ans.	Effect of eccentric load: A load whose line of action does not coincide with the axis of a member is called an eccentric load .The distance between the eccentric axis of the body and the point of loading is called an eccentric limit ' e '. Due to effect of eccentricity axial load causes only direct stress whereas an eccentric load causes direct as well as bending stresses. Direct load is that force which acts at centroidal longitudinal axis of the member. Eccentric load is that force which act away from centroidal longitudinal axis of the member. Thus the resultant stresses due to direct as well as bending stresses in the member (ii) Plan Direct stress $=\boldsymbol{\sigma} 0$, Bending stress $=\boldsymbol{\sigma b}$ $\sigma 0=\mathrm{P} / \mathrm{A}, \sigma \mathrm{b}=(\mathrm{Mxy}) / \mathrm{I}$ therefor $\sigma \mathrm{b}=\mathrm{M} / \mathrm{Z}$ But, Resultant stresses $=$ $\sigma_{\text {direct }}+\sigma_{\text {bending }} \sigma \max =60+6 \mathrm{~b}$, $\sigma \min =60-6 b$	02 M
b)	Explain with expression four conditions of stability of dam.	
Ans.	1. Condition to prevent Overturning of a dam Stability against Due to Overturning (P.h/3) < W (b-X)	01 M

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
2. Condition to prevent sliding of a dam ,Stability against Due to Sliding \(\mathrm{P}<\mathrm{FP}<\mu \mathrm{W}\) factor of safety against sliding \\
3. Compression or Crushing of masonry \\
4. Condition to avoid tension in the masonry Stability against No Tension if \(\mathrm{e}<(\mathrm{b} / 6)\) Where \(\mathrm{e}=\) eccentricity \\
\(\mathrm{P}=\) Compressive Load \(\mathrm{h}=\mathrm{Ht}\). of dam \(\mathrm{W}=\mathrm{Wt}\) of dam \(\mathrm{b}=\) Base width of dam
\end{tabular} \& \[
\begin{aligned}
\& 01 \mathrm{M} \\
\& 01 \mathrm{M} \\
\& 01 \mathrm{M}
\end{aligned}
\] \\
\hline c) \& Calculate maximum and minimum stresses at base of a rectangular column as shown in Fig No. 2 . It carries a load \(\mathbf{2 0 0} \mathbf{K N}\) at ' \(\mathbf{P}\) ' on the outer edge of a column. Draw stress distribution diagram. \& \\
\hline Ans. \& \begin{tabular}{l}
Solution :- \\
Area \(=200 \times 100=\) \\
\(20000 \mathrm{~mm}^{2} \mathrm{P}=200 \mathrm{kN}\) \\
\(\mathrm{e}=50 \mathrm{~mm}\)
\[
\begin{aligned}
\mathrm{M}=\mathrm{P} \times \mathrm{e} \& =200 \times 50=10000 \mathrm{kN} \mathrm{~mm} \\
\mathrm{I}=\mathrm{bd}^{3} / 12 \& =200 \times 100^{3} / 12=16.66 \times 10^{6}=\mathrm{mm}^{4} \\
y=100 / 2 \& =50 \mathrm{~mm} .
\end{aligned}
\] \\
Where, Stresses \\
i) \(6_{0}=\mathrm{P} / \mathrm{A}=200 \times 10^{3} / 20000=10 \mathrm{~N} / \mathrm{mm}^{2}\) \\
ii) \(6 \mathrm{~b}=(\mathrm{Mxy}) / \mathrm{I}\) \\
\(\left(10000 \times 10^{3}\right) \times 50 / 16.66 \times 10^{6}=30.012 \mathrm{~N} / \mathrm{mm}^{2}\) \\
But, \(6 \max =60+6 \mathrm{~b}, \quad 6 \mathrm{~min}=60-6 \mathrm{~b}\)
\[
\begin{aligned}
\& 6 \max =6_{0}+6 \mathrm{~b}=10+30.012=40.012 \mathrm{~N} / \mathrm{mm}^{2} \\
\& 6 \min =6_{0}-6 \mathrm{~b}=10-30.012=-20.012 \mathrm{~N} / \mathrm{mm}^{2} \text { (Tension) }
\end{aligned}
\]
\end{tabular} \& 01 M

01 M

01 M

\hline
\end{tabular}

| stress distribution diagram as below | |
| :--- | :--- | :--- |
| Stress distribution diagram at base | |

	Stress distribution diagram at base	01 M
3.	Attempt any THREE of the following	12 M
a)	Calculate the deflection under point load of a simply supported beam as shown in figure No. 3 Take EI = constant. Use Macaulay's method. Figure 3	
Ans:	1. Calculate support reactions: Taking moment at $\mathrm{B} \sum M_{B}=0$ $\begin{aligned} & \mathrm{R}_{\mathrm{A}} \times 3-9 \times 2=0 \\ & \mathrm{R}_{\mathrm{A}}=6 \mathrm{kN} . \quad \text { And } \mathrm{R}_{\mathrm{B}}=3 \mathrm{kN} \end{aligned}$ Macaulay's method EI $\frac{d^{2} y}{d x^{2}}=$ M --- Differential Equation EI $\frac{d^{2} y}{d x^{2}}=6 x \left\lvert\, \begin{gathered}x=1\end{gathered}-9(x-1)\right.$ Differentiating with respect to x EI $\left.\frac{d y}{d x}=\frac{6 x^{2}}{2}+\mathrm{C}_{1} \right\rvert\,-\frac{9(x-1)^{2}}{2}$ Slope Equation EIy $\left.=\frac{3 x^{3}}{3}+\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2} \right\rvert\,-\frac{9(x-1)^{3}}{6}$ Deflection Equation Calculate Constants of Integration C_{1} and C_{2} Consider boundary condition	01 M

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
1) At \(x=0, y=0\) putting in deflection equation
\[
\begin{aligned}
\& \mathrm{EI}(0)=0+\mathrm{C}_{1} \times 0+\mathrm{C}_{2} \\
\& \mathbf{C}_{2}=\mathbf{0}
\end{aligned}
\] \\
2) At \(x=3 \mathrm{~m}, \mathrm{y}=0\) putting in deflection equation
\[
\begin{aligned}
\& \mathrm{EI}(0)=3^{3}+3 \mathrm{C}_{1}+0-\frac{9}{6}(3-1)^{3} \\
\& \mathbf{C}_{\mathbf{1}}=\mathbf{- 5}
\end{aligned}
\] \\
Putting values of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) in Slope and Deflection Equation. \\
EI \(\frac{d y}{d x}=\frac{6 x^{2}}{2}-5-\frac{9(x-1)^{2}}{2}\) \(\qquad\) Final Slope Equation
\[
\text { EIy }=\frac{3 x^{3}}{3}-5 x-\frac{9(x-1)^{3}}{6}
\]
Final Deflection Equation \\
Calculate Deflection under point load At \(x=1 m, y=y_{c}\) putting in deflection equation.
\[
\text { EI } \mathrm{y}_{\mathrm{c}}=\frac{3(1)^{3}}{3}-5(1)-9(0)
\]
\[
\mathbf{y}_{\mathrm{c}}=\frac{-4}{E I}
\]
\end{tabular} \& 01 M

01 M

01 M

\hline b) \& Calculate fixed end moments and draw BMD for a fixed beam as shown in Fig. \&

\hline Ans: \& | Assume beam is simply supported beam and calculate support Reactions. |
| :--- |
| $\sum M_{A}=0$ Clockwise moment positive and Anti clockwise moment Negative $\begin{aligned} & -\mathrm{R}_{\mathrm{B}} \times 6+20 \times 2+32 \times 4=0 \\ & \mathrm{R}_{\mathrm{B}}=28 \mathrm{kN} \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=\text { Total load }=20+32=52 \\ & \mathrm{R}_{\mathrm{A}}+28=52 \\ & \mathrm{R}_{\mathrm{A}}=24 \mathrm{kN} \end{aligned}$ |
| Calculate BM at C and D for simply supported beam $\mathrm{M}_{\mathrm{c}}=24 \times 2=48 \mathrm{kN} . \mathrm{m} \text { and moment at } \mathrm{D} \mathrm{M}_{\mathrm{D}}=24 \times 4-20 \times 2=56 \mathrm{kN} . \mathrm{m}$ |
| Calculate Fixed End Moments | \& 01 M

\hline
\end{tabular}

	$\begin{aligned} \mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{A} 1}+\mathrm{M}_{\mathrm{A} 2} & =-\frac{W_{1} a_{1} b_{1}{ }^{2}}{L^{2}}-\frac{W_{2} a_{2} b_{2}{ }^{2}}{L^{2}} \\ & =-\frac{20 x 2 x 4^{2}}{6^{2}}-\frac{32 x 4 x 2^{2}}{6^{2}}=-17.78-14.22 \\ \mathrm{M}_{\mathrm{A}} & =-32.0 \mathrm{kN} \cdot \mathrm{~m} \\ \mathrm{M}_{\mathrm{B}}=\mathrm{M}_{\mathrm{B} 1}+\mathrm{M}_{\mathrm{B} 2} & =-\frac{W_{1} a_{1}{ }^{2} b_{1}}{L^{2}}-\frac{W_{2} a_{2}{ }^{2} b_{2}}{L^{2}} \\ & =-\frac{20 x 2^{2} x 4}{6^{2}}-\frac{32 x 4^{2} x 2}{6^{2}}=-8.89-28.44 \\ \mathrm{M}_{\mathrm{B}} & =-37.33 \mathrm{kN} . \mathrm{m} \end{aligned}$ Draw final BMD for simply supported beam and fixed beam by overlapping each other	01 M
c)	Calculate fixed end moments and Draw BMD for a beam as shown in Fig. No. 5. Use first principle method.	
Ans:	1. Assume beam is simply supported beam and calculate simply supported BM. $\operatorname{Mmax}=M_{A B}=\frac{w L^{2}}{8}=\frac{9.6 x 5^{2}}{8}=30.0 \mathrm{kN} . \mathrm{m}$ 2. Calculate Fixed end Moments $\begin{align*} & M_{A}+M_{B}=\frac{-2 a}{L} \\ & \mathrm{a}=\text { Area of SS BM dia. = area of Parabola }=2 / 3 \mathrm{bh} \\ & \mathrm{a}=2 / 3 \times 5 \times 30=100 \mathrm{kN} . \mathrm{m} \\ & \mathrm{M}_{\mathrm{A}}+\mathrm{M}_{\mathrm{B}}=\frac{-2 \times 100}{5}=-40 \quad-\cdots-\cdots------- \text { (I) } \tag{I} \end{align*}$	01 M

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{align*}
\& \text { and } \mathrm{M}_{\mathrm{A}}+2 \mathrm{M}_{\mathrm{B}}=\frac{-6 \mathrm{ax}}{L^{2}} \\
\& \mathrm{x}=\mathrm{C} . \mathrm{G} . \text { of } \mathrm{SS} \mathrm{BM}=5 / 2=2.5 \mathrm{~m} \\
\& \mathrm{M}_{\mathrm{A}}+2 \mathrm{M}_{\mathrm{B}}=\frac{-6 \times 100 x 2.5}{5^{2}}=-60 \tag{II}
\end{align*}
\] \\
Solving Two Simultaneous Equations I and II
\[
M_{A}=-20 \mathrm{kN} . \mathrm{m} \quad M_{B}=-20 \mathrm{kN} . \mathrm{m}
\] \\
OR \\
Note: Fixed end moments can be calculated by using standard formula as formula is Derived using First Principle, hence if students solve problem using formula appropriate Marks shall be given
\[
\begin{gathered}
M_{A B}=-\frac{w L^{2}}{12}=-\frac{9.6 x 5^{2}}{12}=-20.0 \mathrm{kN} \cdot \mathrm{~m} \\
M_{B A}=\frac{w L^{2}}{12}=+\frac{9.6 x 5^{2}}{12}=+20.0 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
\] \\
3. Draw Final BM diagram by overlapping simply supported BM and Fixed end BM.
\end{tabular} \& 01 M
01 M

01 M

\hline d) i) \& Explain with sketch the effect of fixity on bending moment of a beam. \&

\hline Ans: \& | If simply supported beam is considered subjected to any pattern of loading, beam bends and slopes will developed at the ends. If however, the ends of beam is firmly built in supports i.e. ends are fixed, slopes at the supports are zero. Fixity at ends induces end moments. Due to fixity, deflection of beam at center of beam is also reduced as compared to simply supported beam. |
| :--- |
| Simply supported beam |
| Fixed Beam | \& 01 M

01 M

\hline
\end{tabular}

(ii)	State two advantages of fixed beam over simply supported beam.	
Ans:	1. End slopes of fixed beam are zero 2. A fixed beam is more stiff, strong and stable than a simply supported beam. 3. For the same span and loading, a fixed beam has lesser values of bending moments as compared to a simply supported beam. 4. For the same span and loading, a fixed beam has lesser values of deflections as compared to a simply supported beam.	$\begin{gathered} 02 \mathrm{M} \\ \text { for } \\ \text { any } 2 \end{gathered}$
Q.4.	Attempt any THREE of the following	12
a)	State Clapeyron's theorem of three moments for continuous beam with same and different EI	
Ans:	The claperon's theorm of three moment is applicable to two span continuous beams. It state that " For any two consecutive spans of continuous beam subjected to an external loading and having uniform moment of inertia, the support moments M_{A}, M_{B} and M_{C} at supports A, B and C respectively are given by following equation If the moment of inertia is not constant then claperon's theorem can be stated in the form of following equation. $M_{A} \frac{L_{1}}{I_{1}}+2 M_{B}\left(\frac{L_{1}}{I_{1}}+\frac{L_{2}}{I_{2}}\right)+M_{C} \frac{L_{2}}{I_{2}}+M_{C} \frac{L_{2}}{I_{2}}=-\left[\frac{6 A_{1} X_{1}}{L_{1} I_{1}}+\frac{6 A_{2} X_{2}}{L_{2} I_{2}}\right]$ Where,L_{1} and L_{2} are length of span $A B$ and $B C$ respectively. I_{1} and I_{2} are moment of inertia of span AB and BC respectively. A_{1} and A_{2} are area of simply supported $B M D$ of span $A B$ and $B C$ respectively. X_{1} and X_{2} are distances of centroid of simply supported BMD from A and C respectively.	01 M

b)	Draw SFD or a continuous beam as shown in Fig. No. 6 having negative bending moment at support ' B ' equal to $\mathbf{6 6 . 1 4} \mathbf{k N}$.m Fig. No. 6	
Ans:	Calculate the support reactions Clockwise moment positive and Anti clockwise moment Negative Consider Span AB Taking moment at B $\sum M_{B}=0$ $\begin{aligned} & \mathrm{R}_{\mathrm{A}} \times 6-20 \times 6 \times 3+66.14=0 \\ & \mathrm{R}_{\mathrm{A}}=48.976 \mathrm{kN} . \end{aligned}$ Consider Span BC Taking moment at B $\sum M_{B}=0$ $\begin{aligned} & -\mathrm{R}_{\mathrm{C}} \times 5+40 \times 2.5-66.14=0 \\ & \mathrm{R}_{\mathrm{C}}=6.772 \mathrm{kN} \\ & \sum F_{y}=0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{C}}-20 \times 6-40=0 \\ & 48.976+\mathrm{R}_{\mathrm{B}}+6.772=160 \\ & \mathrm{R}_{\mathrm{B}}=104.252 \mathrm{kN} \end{aligned}$ 1. S.F. Calculations: SF at A, just left $=0$ and Just Right $=+48.976 \mathrm{kN}$. SF at B, just left $=+48.976-20 \times 6=-71.024 \mathrm{kN}$. $\text { Just Right }=-71.024+104.252=+33.228 \mathrm{kN}$ SF at D, just left $=+33.228 \mathrm{kN}$ Just Right $=+33.228-40=-6.772 \mathrm{kN}$ SF at C , just left $=-6.772 \mathrm{kN}$ Just Right $=-6.772 \mathrm{kN}+6.772 \mathrm{kN}=0$	01 M

	$\begin{aligned} & M_{B A}=\frac{w L^{2}}{12}=+\frac{20 \times 3^{2}}{12}=+15 \mathrm{kN} . \mathrm{m} \\ & \mathrm{M}_{\mathrm{BC}}=-30 \times 1=-30 \mathrm{kN} . \mathrm{m} \end{aligned}$ Distribution factor $\mathrm{DF}_{\mathrm{BA}}=1.0, \mathrm{DF}_{\mathrm{BC}}=0$ as it is overhang	Table 02 M 01 M
e)	Draw one Sketch of the following.	
(i)	Deficient frame	
Ans:		01M
(ii)	Redundant frame	
Ans:		01 M

(iii)	Symmetrical portal frame	
Ans:		Any 01 one mark
(iv)	Unsymmetrical portal frame	
Ans:	(i) Unsymmetrical portal frame hinged at the base (ii) Unsymmetrical portal frame one end fixed, other hinged Note- Other than these above sketches if any relevant sketch is drawn, the marks are given accordingly.	Any 01 one mark
Q.5.	Attempt any TWO of the following	12 M
a)	Calculate Maximum Deflection of Simply Supported Beam as Shown In Fig no-9. take $\mathrm{E}=200 \mathrm{gpa} \mathrm{I}=2 \times 10{ }^{8}$ Use Macaulay's Method.	
Ans:	Given :- $\begin{aligned} & \mathrm{E}=200 \mathrm{GPA}=200 \times 10^{3}=\mathrm{N} / \mathrm{mm}^{2} \\ & \mathrm{E}=200 \times 10^{3}=2 \times 10^{8} \mathrm{KN} / \mathrm{m}^{2} \\ & \mathrm{I}=2 \times 10^{8}=\mathrm{mm}^{4} \\ & \mathrm{I}=2 \times 10^{-4} \mathrm{~m}^{4} \end{aligned}$ 1)Find support Reaction	01 M

	$\begin{aligned} & \mathrm{I}=\mathbf{2 \times 1 0 ^ { 8 } = \mathrm { mm } ^ { 4 }} \\ & \mathrm{I}=\mathbf{2 \times 1 0 ^ { - 4 }} \mathbf{m}^{\mathbf{4}} \\ & \mathrm{Y}=-21.132 / \mathrm{EI} \\ & =21.132 /\left(200 \times 10^{-4} * \quad 200 \times 10^{8}\right) \\ & \mathrm{Y} \text { max }=\mathbf{0 . 0 0 0 5 2 8 8 \quad \mathbf { m } = \mathbf { 0 . 0 0 0 5 2 8 m }} \\ & \mathrm{Y} \max =\mathbf{0 . 5 2 8} \mathbf{~ m m}(- \text { ve indicate downward deflection }) \end{aligned}$	01 M
b)	Calculate Maximum Slope \& Maximum Deflection Of A Cantilever Beam As Shown In Fig	
Ans:	Given :- $E=100 \quad G P A=100 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ Width $=100 \mathrm{~mm}$,depth $=200 \mathrm{~mm}$ $\mathrm{I}=\mathrm{bd}^{3} / 12=100^{*}(200)^{3} / 12 \neq 66.66 \times 10^{6}$ Maximum deflection =Deflection due to UDL+ deflection due to point load $\mathrm{YB}=\mathrm{yB} 1+\mathrm{yB} 2$ $\mathrm{Yb} 1=-\mathrm{WL}^{4} / 8 \mathrm{EI}=\left(-2 \mathrm{X}(2000)^{4}\right) /\left(8 \mathrm{X} 100 * 10^{3} * 66.66 \mathrm{X} 10^{6}\right)$ $=-\mathbf{0 . 6 0 0} \mathrm{mm}$ $\mathrm{Yb} 2=-\mathrm{WL}^{4} / 3 \mathrm{EI}=\left(-5000 \mathrm{X}(2000)^{3}\right) /\left(3 * 100 * 66.66 * 10^{6} * 10^{3}\right)$ $=\mathbf{- 2 . 0 1 ~ m m}$ $\mathrm{YB}=\mathrm{YB} 1+\mathrm{YB} 2=-(0.6+2.01)=\mathbf{- 2 . 6} \mathbf{~ m m}$ maximum slope $=$ slope due to UDL + slope due to point load deflection Maximum $=\mathbf{2 . 6 m m}$ (-ve indicates the downward deflection) Maximum slope $=\mathbf{0 . 0 0 1 9}$ Radian	$1 M$ $1 M$ $1 M$ $1 M$ $1 M$

ENGINEERING

c)	Calculate Support Moments For A Beam As Shown In Fig No-08 . Use Three Moment Theorem.	
Ans:	TO find support moments and reactions $\begin{aligned} \text { B. } \mathrm{M} \text { at mid span } \mathrm{AB} & =\mathrm{WL}^{2} / 8=20(3)^{2} / 8 \\ & =\mathbf{2 2 . 5} \mathbf{~ K N} . \mathbf{M} \end{aligned}$ Consider the cantilever action point BC $\mathrm{MB} \quad=\quad-30 \mathrm{X} 1=-\mathbf{3 0} \mathrm{KNm}$ Since the end A is fixed assume as imaginary span A-AO at left of A For span AO-A 6 ao* o / L0 $=0$ Span AO A B A1 $=$ Area Of A Diagram $=(2 / 3) * 3 * 22.5=45$ $\mathrm{X} 1=$ centroidal distance of a diagram $=3 / 2=\mathbf{1 . 5 m}$ A1 X1 $=45 * 1.5=67.5$ Applying clapeymn's theorem of three moment for span A Ao \& AB we get Mo L0+2MA (Lo+L1) +MBL1 $=-[6 \mathrm{a} 0 \mathrm{X} 0 / \mathrm{Lo}+$ + $6 \mathrm{a} 1 \mathrm{x} 1 / \mathrm{L} 1]$ $0+2 \mathrm{MA}(0+3)+(-30)(3)=[0+6 \times 67.5 / 3]$ 6 MA - $90=-135$ $6 \mathrm{MA}=-135+90=-45$ $\mathrm{MA}=-7.5 \mathrm{KN}-\mathrm{m}$ Consider Span ABC Take moment @ a $\begin{aligned} & \mathrm{O}=20 * 3 * 1.5+30+30 * 4-\mathrm{RB} * 3 \\ & \mathrm{RB} * 3=240 \quad \text { RB=80KN. } \\ & \sum \mathrm{fy}=0 \\ & 0=\mathrm{RA}+\mathrm{RB}-20 \mathrm{X} 3-30 \\ & 0=\mathrm{RA}+80-60-30 \\ & \text { RA }=\mathbf{1 0 K N} \end{aligned}$	

Q.6.	Attempt Any Two of the following	12 M
a)	calculate support moment for a spam as shown in fig no.11 Use moment distribution method	
Ans:	Solution :- Assume span $\mathrm{AB} \& \mathrm{BC}$ as a fixed beam and find fixed end moment $\mathrm{M} \mathrm{AB}=-\mathrm{WL}^{2} / 12=-10(5)^{\wedge} 2 / 12=-20.83 \mathrm{KN}-\mathrm{m}$ $\mathrm{MBA}=\mathrm{WL}^{2} / 12=10(5)^{\wedge} 2 / 12=20.83 \mathrm{KN}-\mathrm{m}$ $\mathrm{M} \mathrm{BC}=-\mathrm{Wab}^{2} / \mathrm{L}^{2}=50(2)(2)^{2} / 4^{2}=-25 \mathrm{KN}-\mathrm{m}$ $\mathrm{MCB}=+\mathrm{Wab}^{2} / \mathrm{L}^{2}=5 * 2 * 2^{2} / 4^{2}=25 \mathrm{KN}-\mathrm{m}$ To find the Stiffness factor at joint B $\mathrm{K} \mathrm{BA}=3 \mathrm{EI} / \mathrm{L} \mathrm{AB}=3 \mathrm{E}(2 \mathrm{I}) / 5=6 \mathrm{EI} / 5=\mathbf{1 . 2} \mathrm{EI}$ $\mathrm{K} \mathrm{BC}=3 \mathrm{EI} / \mathrm{LBC}=3 \mathrm{EI} / 4=\mathbf{0 . 7 5} \mathrm{EI}$ $\sum \mathrm{K}=1.2 \mathrm{EI}+0.75 \mathrm{EI}=\mathbf{1 . 9 5} \mathrm{EI}$ Distribution Factor DFBA $=\mathrm{KBA} / \sum \mathrm{K}=1.2 \mathrm{EI} / 1.95 \mathrm{EI}=\mathbf{0 . 6 2}$ DFBC $=\mathrm{KBC} / \sum \mathrm{K}=0.75 \mathrm{EI} / 1.95 \mathrm{EI}=\mathbf{0 . 3 8}$ Assume span AB and BC to be simply supported beam and find free BM. For span AB L=5m W=10KN/m $\mathrm{M}_{\text {max }}=\mathrm{wl}^{2} / 8 \quad=10^{*}(5)^{2} / 8=\mathbf{3 1 . 2 5} \quad$ KN.m	01 M

ENGINEERING

	For span BC $\begin{aligned} \text { SPAN BC } & =4 \mathrm{~m}, \mathrm{a}=2 \mathrm{~m} \mathrm{~b}=2 \mathrm{~m} \mathrm{w} \end{aligned}=50 \mathrm{kn}, ~=\mathrm{wab} / \mathrm{L}=50 * 2 * 2 / 4=\mathbf{5 0 k n - m} .$	02 M
b)	Calculate magnitude\& state the nature of forces in the member AB,BC,CD,DE,BD \& BE of truss as shown in fig (12) use method of section	
Ans:	Consider $\triangle C B D \tan \theta=$$2 / 2=45$ $\theta=45$Consider section (1)-(1) cut at BC \& CD (joint C) Consider section (1)-(1) cut at BC \& CD (joint C) $\sum \mathrm{FY}=0$ $0=-1+\mathrm{Fcd} \sin \theta$ Fcd $\sin \theta=1$	

ENGINEERING

| c) | calculate magnitude \&state the nature of forces in member AB,BC,CD,AD\&BD Of
 a truss as shown in fig . use method of joints. | |
| :--- | :--- | :--- | :--- |

